不同路径2 中等🌟🌟🌟🌟

问题描述

原文链接:63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

img

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

img

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

代码实现

Java

class Solution {
    /*
        第一步:
        dp[i][j]:表示走到(i,j)这个地方一共有 dp[i][j]条路径
        第二步:找关系式
        if(obstacleGrid[i][j] == 1){
            dp[i][j] = 0
        }else{
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
        }

        第三步:初始值
        dp[0][0] = obstacleGrid[0][0] == 1? 0 : 1; 
        dp[0][j] = dp[0][j-1]
        dp[i][0] = dp[i-1][0];


    */
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int n = obstacleGrid.length;
        int m = obstacleGrid[0].length;
        int[][] dp = new int[n][m];

        dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
        // 最上面一行
        for(int j = 1; j < m; j++){
            dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j-1];
        }
        // 最左边一列
        for(int i = 1; i < n; i++){
            dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i-1][0];
        }

        for(int i = 1; i < n; i++){
            for(int j = 1; j < m; j++){
                if(obstacleGrid[i][j] == 1){
                    dp[i][j] = 0;
                }else{
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[n-1][m-1];

    }
}

Python

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        """
        第一步:
        dp[i][j]:表示走到(i,j)这个地方一共有 dp[i][j] 条路径

        第二步:找关系式
        if obstacleGrid[i][j] == 1:
            dp[i][j] = 0
        else:
            dp[i][j] = dp[i-1][j] + dp[i][j-1]

        第三步:初始值
        dp[0][0] = 0 if obstacleGrid[0][0] == 1 else 1
        dp[0][j] = dp[0][j-1]
        dp[i][0] = dp[i-1][0]
        """
        n = len(obstacleGrid)
        m = len(obstacleGrid[0])
        dp = [[0 for _ in range(m)] for _ in range(n)]

        dp[0][0] = 0 if obstacleGrid[0][0] == 1 else 1
        # 最上面一行
        for j in range(1, m):
            dp[0][j] = 0 if obstacleGrid[0][j] == 1 else dp[0][j-1]
        # 最左边一列
        for i in range(1, n):
            dp[i][0] = 0 if obstacleGrid[i][0] == 1 else dp[i-1][0]

        for i in range(1, n):
            for j in range(1, m):
                if obstacleGrid[i][j] == 1:
                    dp[i][j] = 0
                else:
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]

        return dp[n-1][m-1]

C++

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        /*
        第一步:
        dp[i][j]:表示走到(i,j)这个地方一共有 dp[i][j] 条路径

        第二步:找关系式
        if obstacleGrid[i][j] == 1:
            dp[i][j] = 0
        else:
            dp[i][j] = dp[i-1][j] + dp[i][j-1]

        第三步:初始值
        dp[0][0] = 0 if obstacleGrid[0][0] == 1 else 1
        dp[0][j] = dp[0][j-1]
        dp[i][0] = dp[i-1][0]
        */
        int n = obstacleGrid.size();
        int m = obstacleGrid[0].size();
        vector<vector<int>> dp(n, vector<int>(m, 0));

        dp[0][0] = (obstacleGrid[0][0] == 1) ? 0 : 1;
        // 最上面一行
        for (int j = 1; j < m; j++) {
            dp[0][j] = (obstacleGrid[0][j] == 1) ? 0 : dp[0][j-1];
        }
        // 最左边一列
        for (int i = 1; i < n; i++) {
            dp[i][0] = (obstacleGrid[i][0] == 1) ? 0 : dp[i-1][0];
        }

        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[i][j] = 0;
                } else {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[n-1][m-1];
    }
};

Go

func uniquePathsWithObstacles(obstacleGrid [][]int) int {
    /*
    第一步:
    dp[i][j]:表示走到(i,j)这个地方一共有 dp[i][j] 条路径

    第二步:找关系式
    if obstacleGrid[i][j] == 1:
        dp[i][j] = 0
    else:
        dp[i][j] = dp[i-1][j] + dp[i][j-1]

    第三步:初始值
    dp[0][0] = 0 if obstacleGrid[0][0] == 1 else 1
    dp[0][j] = dp[0][j-1]
    dp[i][0] = dp[i-1][0]
    */
    n := len(obstacleGrid)
    m := len(obstacleGrid[0])
    dp := make([][]int, n)
    for i := 0; i < n; i++ {
        dp[i] = make([]int, m)
    }

    dp[0][0] = 0
    if obstacleGrid[0][0] == 0 {
        dp[0][0] = 1
    }
    // 最上面一行
    for j := 1; j < m; j++ {
        dp[0][j] = 0
        if obstacleGrid[0][j] == 0 {
            dp[0][j] = dp[0][j-1]
        }
    }
    // 最左边一列
    for i := 1; i < n; i++ {
        dp[i][0] = 0
        if obstacleGrid[i][0] == 0 {
            dp[i][0] = dp[i-1][0]
        }
    }

    for i := 1; i < n; i++ {
        for j := 1; j < m; j++ {
            if obstacleGrid[i][j] == 1 {
                dp[i][j] = 0
            } else {
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
            }
        }
    }

    return dp[n-1][m-1]
}

发表评论

后才能评论