编辑距离 困难🌟🌟🌟🌟

问题描述

原文链接:72. 编辑距离

给你两个单词 word1word2请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

代码实现

Java

class Solution {
    /*
    1.dp[i][j]:表示长度为 i 的word1转为长度为 j 的word2所需要的最少操作次数为dp[i][j]。
    2. 关系式
            word1 = hor
            word2 =  ho
        dp[i][j] = 
        (1). w1[i] == w2[j]=>dp[i][j] = dp[i-1][j-1]。
        (2).如果 w1[i] != w2[j]
        a. 插入:dp[i][j] = dp[i][j-1] + 1。
        b.删除 :dp[i][j] = dp[i-1][j] + 1
        c.替换: dp[i][j] = dp[i-1][j-1] + 1.

        dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1

    3、初始值
    dp[0][j] = j
    dp[i][0] = i
    */
    public int minDistance(String word1, String word2) {
        int n1 = word1.length();
        int n2 = word2.length();

        int[][] dp = new int[n1+1][n2+1];

        // 初始化
        for(int i = 0; i <= n1; i++){
            dp[i][0] = i;
        }
        for(int j = 0; j <= n2; j++){
            dp[0][j] = j;
        }

        //
        for(int i = 1; i <= n1; i++){
            for(int j = 1; j <= n2; j++){
                if(word1.charAt(i-1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = Math.min(Math.min(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1;
                }
            }
        }

        return dp[n1][n2];
    }

}

Python

class Solution(object):
    def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype: int
        """
        n1 = len(word1)
        n2 = len(word2)

        dp = [[0] * (n2+1) for _ in range(n1+1)]

        # 初始化
        for i in range(n1+1):
            dp[i][0] = i
        for j in range(n2+1):
            dp[0][j] = j

        # DP迭代
        for i in range(1, n1+1):
            for j in range(1, n2+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1

        return dp[n1][n2]

C++

class Solution {
public:
    int minDistance(string word1, string word2) {
        int n1 = word1.length();
        int n2 = word2.length();

        vector<vector<int>> dp(n1+1, vector<int>(n2+1));

        // 初始化
        for(int i = 0; i <= n1; i++){
            dp[i][0] = i;
        }
        for(int j = 0; j <= n2; j++){
            dp[0][j] = j;
        }

        // DP迭代
        for(int i = 1; i <= n1; i++){
            for(int j = 1; j <= n2; j++){
                if(word1[i-1] == word2[j-1]){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = min(min(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1;
                }
            }
        }

        return dp[n1][n2];
    }
};

Go

func minDistance(word1 string, word2 string) int {
    n1 := len(word1)
    n2 := len(word2)

    dp := make([][]int, n1+1)
    for i := range dp {
        dp[i] = make([]int, n2+1)
    }

    // 初始化
    for i := 0; i <= n1; i++ {
        dp[i][0] = i
    }
    for j := 0; j <= n2; j++ {
        dp[0][j] = j
    }

    // DP迭代
    for i := 1; i <= n1; i++ {
        for j := 1; j <= n2; j++ {
            if word1[i-1] == word2[j-1] {
                dp[i][j] = dp[i-1][j-1]
            } else {
                dp[i][j] = min(min(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1
            }
        }
    }

    return dp[n1][n2]
}

func min(a, b int) int {
    if a < b {
        return a
    }
    return b
}

发表评论

后才能评论