从前序与中序遍历序列构造二叉树 🌟🌟🌟🌟🌟中等

课后作业

问题描述

原文链接:105. 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:

img

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

提示:

  • 1 <= preorder.length <= 3000
  • inorder.length == preorder.length
  • -3000 <= preorder[i], inorder[i] <= 3000
  • preorderinorder 均无重复元素
  • inorder 均出现在 preorder
  • preorder保证为二叉树的前序遍历序列
  • inorder保证为二叉树的中序遍历序列

代码实现

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    Map<Integer, Integer> map = new HashMap();
    public TreeNode buildTree(int[] preorder, int[] inorder) {

        for(int i = 0; i < inorder.length; i++){
            map.put(inorder[i], i);
        }

        return f(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);

    }

    TreeNode f(int[] pre, int l1, int r1, int[] in, int l2, int r2){
        if(l1 > r1 || l2 > r2){
            return null;
        }

        TreeNode root = new TreeNode(pre[l1]);
        int i = map.get(pre[l1]);
        root.left = f(pre, l1+1, l1+(i-l2), in, l2, i-1);
        root.right = f(pre, l1+(i-l2)+1, r1, in, i + 1, r2);

        return root;
    }

}

Python

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):
    def buildTree(self, preorder, inorder):
        """
        :type preorder: List[int]
        :type inorder: List[int]
        :rtype: TreeNode
        """
        map = {}
        for i in range(len(inorder)):
            map[inorder[i]] = i

        return self.f(preorder, 0, len(preorder)-1, inorder, 0, len(inorder)-1, map)

    def f(self, pre, l1, r1, ino, l2, r2, map):
        if l1 > r1 or l2 > r2:
            return None

        root = TreeNode(pre[l1])
        index = map[pre[l1]]
        root.left = self.f(pre, l1+1, l1+(index-l2), ino, l2, index-1, map)
        root.right = self.f(pre, l1+(index-l2)+1, r1, ino, index+1, r2, map)

        return root

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<int, int> map;
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        for (int i = 0; i < inorder.size(); i++) {
            map[inorder[i]] = i;
        }
        return f(preorder, 0, preorder.size()-1, inorder, 0, inorder.size()-1);
    }

    TreeNode* f(vector<int>& pre, int l1, int r1, vector<int>& in, int l2, int r2) {
        if (l1 > r1 || l2 > r2) {
            return nullptr;
        }
        TreeNode* root = new TreeNode(pre[l1]);
        int index = map[pre[l1]];
        root->left = f(pre, l1+1, l1+(index-l2), in, l2, index-1);
        root->right = f(pre, l1+(index-l2)+1, r1, in, index+1, r2);
        return root;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func buildTree(preorder []int, inorder []int) *TreeNode {
    hashMap := make(map[int]int)
    for i := 0; i < len(inorder); i++ {
        hashMap[inorder[i]] = i
    }

    return f(preorder, 0, len(preorder)-1, inorder, 0, len(inorder)-1, hashMap)
}

func f(pre []int, l1 int, r1 int, ino []int, l2 int, r2 int, hashMap map[int]int) *TreeNode {
    if l1 > r1 || l2 > r2 {
        return nil
    }

    root := &TreeNode{Val: pre[l1]}
    index := hashMap[pre[l1]]
    root.Left = f(pre, l1+1, l1+(index-l2), ino, l2, index-1, hashMap)
    root.Right = f(pre, l1+(index-l2)+1, r1, ino, index+1, r2, hashMap)

    return root
}

发表评论

后才能评论