从中序与后序遍历序列构造二叉树 🌟🌟🌟🌟中等

课后作业

问题描述

原文链接:106. 从中序与后序遍历序列构造二叉树

难度中等

1018

给定两个整数数组 inorderpostorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树

示例 1:

img

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

示例 2:

输入:inorder = [-1], postorder = [-1]
输出:[-1]

提示:

  • 1 <= inorder.length <= 3000
  • postorder.length == inorder.length
  • -3000 <= inorder[i], postorder[i] <= 3000
  • inorderpostorder 都由不同的值组成
  • postorder 中每一个值都在 inorder
  • inorder 保证是树的中序遍历
  • postorder 保证是树的后序遍历

代码实现

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    Map<Integer, Integer> map = new HashMap();
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        for(int i = 0;i < inorder.length; i++){
            map.put(inorder[i], i);
        }

        return f(inorder, 0, inorder.length - 1,  postorder, 0, postorder.length - 1);
    }

    TreeNode f(int[] in, int l1, int r1, int[] post, int l2, int r2){
        if(l1 > r1 || l2 > r2){
            return null;
        }

        TreeNode root = new TreeNode(post[r2]);
        int i = map.get(post[r2]);
        root.left = f(in, l1, i - 1, post, l2, l2 + (i-l1) - 1);
        root.right = f(in, i + 1, r1, post, l2 + (i-l1) , r2 - 1);

        return root;
    }
}

Python

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):
    def buildTree(self, inorder, postorder):
        """
        :type inorder: List[int]
        :type postorder: List[int]
        :rtype: TreeNode
        """
        hashMap = {}
        for i in range(len(inorder)):
            hashMap[inorder[i]] = i

        return self.f(inorder, 0, len(inorder)-1, postorder, 0, len(postorder)-1, hashMap)

    def f(self, ino, l1, r1, post, l2, r2, hashMap):
        if l1 > r1 or l2 > r2:
            return None

        root = TreeNode(post[r2])
        i = hashMap[post[r2]]
        root.left = self.f(ino, l1, i-1, post, l2, l2+(i-l1)-1, hashMap)
        root.right = self.f(ino, i+1, r1, post, l2+(i-l1), r2-1, hashMap)

        return root

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<int, int> map;
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        for (int i = 0; i < inorder.size(); i++) {
            map[inorder[i]] = i;
        }
        return f(inorder, 0, inorder.size()-1, postorder, 0, postorder.size()-1);
    }

    TreeNode* f(vector<int>& in, int l1, int r1, vector<int>& post, int l2, int r2) {
        if (l1 > r1 || l2 > r2) {
            return nullptr;
        }
        TreeNode* root = new TreeNode(post[r2]);
        int i = map[post[r2]];
        root->left = f(in, l1, i-1, post, l2, l2+(i-l1)-1);
        root->right = f(in, i+1, r1, post, l2+(i-l1), r2-1);
        return root;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func buildTree(inorder []int, postorder []int) *TreeNode {
    hashMap := make(map[int]int)
    for i := 0; i < len(inorder); i++ {
        hashMap[inorder[i]] = i
    }

    return f(inorder, 0, len(inorder)-1, postorder, 0, len(postorder)-1, hashMap)
}

func f(ino []int, l1 int, r1 int, post []int, l2 int, r2 int, hashMap map[int]int) *TreeNode {
    if l1 > r1 || l2 > r2 {
        return nil
    }

    root := &TreeNode{Val: post[r2]}
    i := hashMap[post[r2]]
    root.Left = f(ino, l1, i-1, post, l2, l2+(i-l1)-1, hashMap)
    root.Right = f(ino, i+1, r1, post, l2+(i-l1), r2-1, hashMap)

    return root
}

发表评论

后才能评论